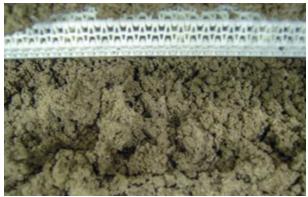
BLUE ECONOMY AQUACULTURE FORUM

Technology & Water Quality Management in RAS

Dr Anthony J. Dinning, Abu Dhabi, 25th of May 2023

Agenda



- Introduction
- What is a RAS?
- What do we do in a RAS system?
- What are our resources?
- How do we protect them?
- How can we get the best out of the fish?
- What is 'Water Quality'?
- How do we maintain that?

Who is Dr Tony Dinning?

- I am a water guy PhD applied microbiology
- I approach aquaculture from a water quality perspective.....
- I was asked to conduct H₂S risk assessments on behalf of Gjensidige insurance

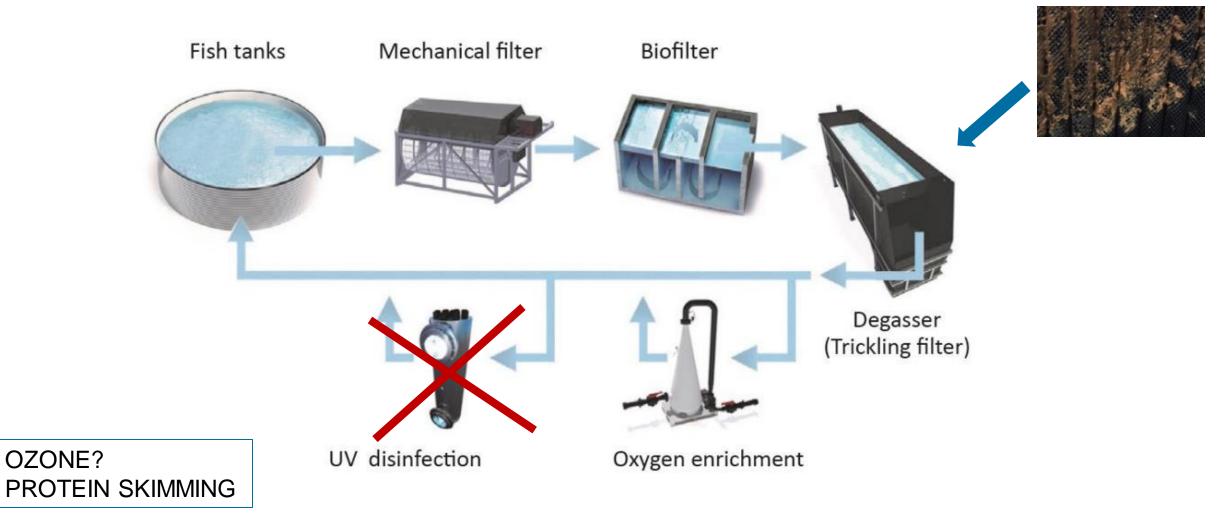
- If you give your biomass the best YOU WILL receive the best
- Water quality HAS to be CENTRAL in aquaculture

(Secretly I am a long distance cycling 'Rock God')

RAS – What is it?

- We take water
- We add fish
- We recirculate the water (> 99%)

- The fish live in this water
- The water becomes toxic


- Business case → fish production
- Equates to biomass per kg feed
- Water is treated in terms of feed added

- How can we achieve the best water quality?
- How do we minimise loss?

Traditional RAS design – Supplier dependent

The publicised losses

 H₂S was observed as the significant but silent killer in RAS

- Poor design
- Inefficiency in particle removal
- Increased solids & sedimentation
- Sedimentation in RAS

ATLANTIC SALMON | WELFARE | WATER QUALITY +7 more 12 July 2021, at 11:09am

Atlantic Sapphire reports another mass mortality

Researchers highlight hidden killers in RAS water

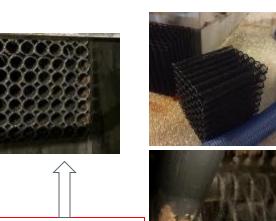
> Norwegian firm retains faith in RAS as hydrogen sulphide confirmed as cause of cod deaths

> ost all of the fish at a pilot recirculating aquaculture system overnight in December, and has now confirmed the reasons

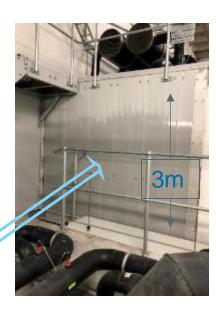
By Undercurrent News | Jan. 9, 2023 10:16 GMT

Egeland 2019 – (Gjensidige Insurance) 25% mortalities due to H₂S

Risk identification Solids & H₂S


- TSS, sedimentation, loss of hygiene and H₂S occurrences are related
- Bio block → originally fixed bed media → CO₂ degasser
- Automatic sloughing rate sulphidic biofilm enters the water
- In RAS systems this can result in mass mortality

Bioblock as fixed bed



Sulphidic biofilm

Sulphide (H₂S), biofilm & TSS

Drum filter inlet

192ppm S²⁻

Pump sump

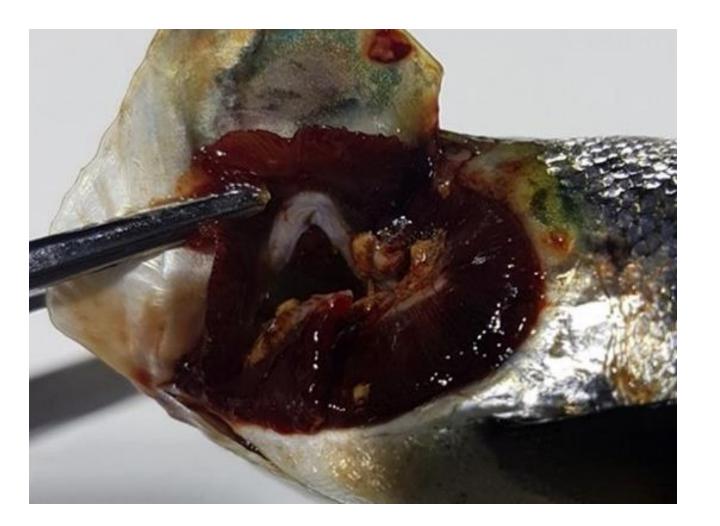
> 1000ppm S²-

Distribution header

204ppm S²-

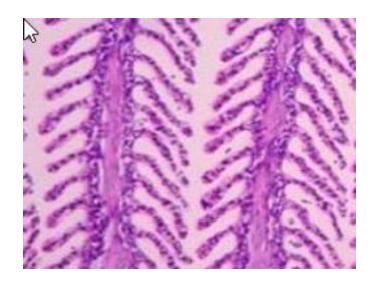
Bioblock CO₂ degasser

 $> 500 \text{ ppm S}^{2-}$

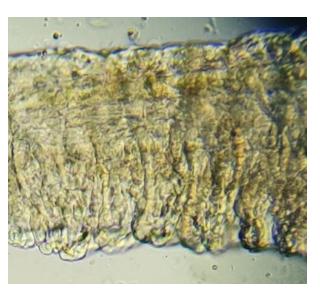

Fixed bed lid

20 ppm S²-

Risk identification - Total Suspended Solids (TSS)

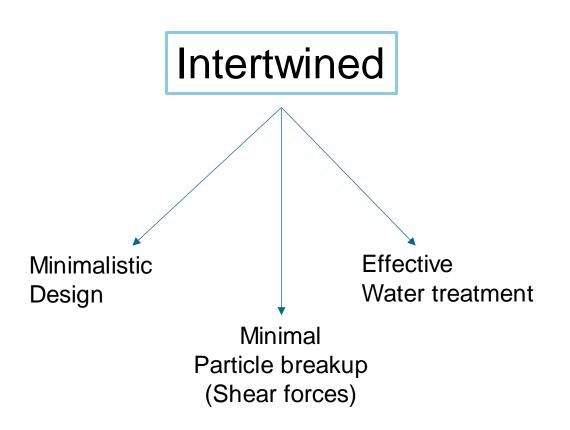

- TSS → faeces, spent feed, loosened biofilm etc
- Increased TSS → Gill inflammation
- Unhygienic → Fungus / Bacteria / Virus
- Lamellae become eroded
- Poor respiration (oxygen uptake)

TSS and gill physiology

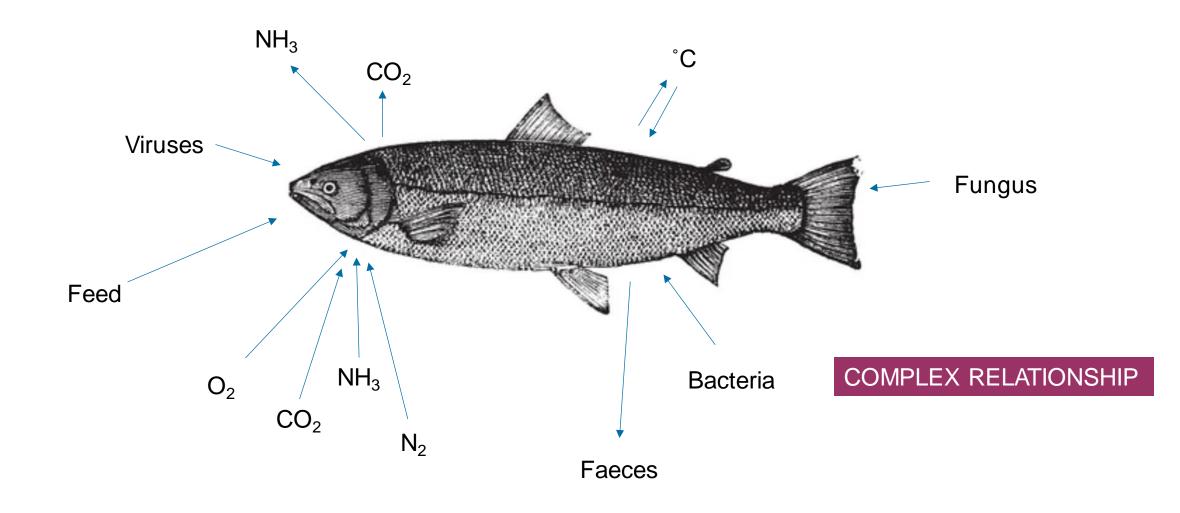


Low particle loading

Erroded lamellae – high particle loading


INCREASED H₂S MORTALITIES NECESSITATED A CHANGE IN RAS DESIGN

DESIGN & WATER QUALITY ARE KEY



What are the essential factors we have to treat?

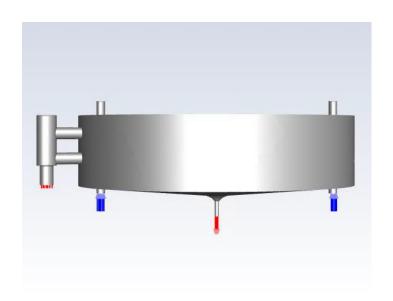
- Particle removal
- Avoid fines generation
- Remove metabolites (TAN, CO₂)
- Avoid sedimentation
- Minimize H2S risk
- Ensure the best environment for the fish

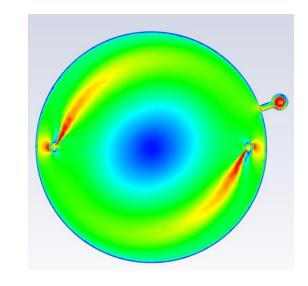
Or to put it another way.....

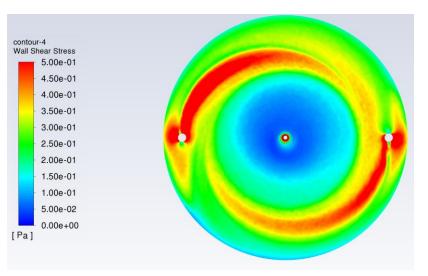
What makes Sterner different?

- Quick and consistent particle removal from the tank
- Minimal flow in design
- Low solids concentrations
- High efficacy MBBR → minimal biological sludge
- Positive control of RedOx (ozonation)
- Hygienic bio block design

Healthy stock

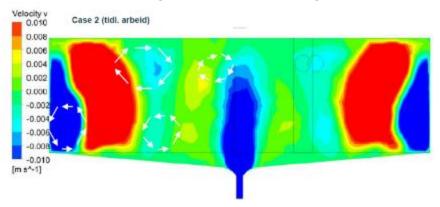



Fish tank hydraulics surprisingly important...

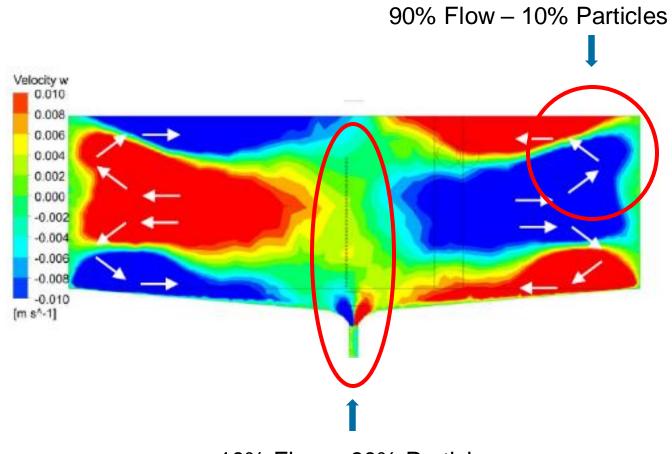

Tank design & depth

sterner

- Inlet pipe direction, depth and velocity
- 0.5m difference in depth has a significant effect



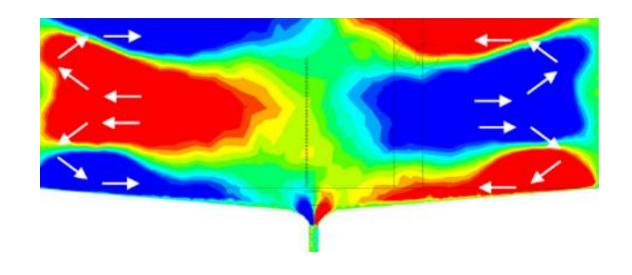
Fish tank hydraulics


«Regular» design

CFD Optimisation

- Optimal design of filters
- No particles in the tank > 10 minutes
- Almost all particles out < 5 minutes
- Consolidation of 'solids' as a resource
- Minimal fines production
- Optimal fish health & respiration

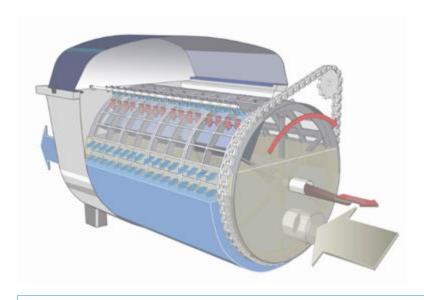
Optimised Sterner design



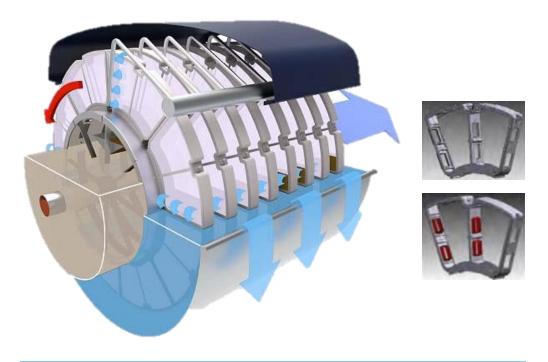
10% Flow – 90% Particles

What does this mean?

- Avoid particle shear
- Improve particle removal
- Fewer 'fines' through MBBR
- Improved effect of ozonation
- Control over unwanted bacteria
 - 90% fewer heterotrophs in MBBR
 - Reduced H₂S risk to the fish
 - Protect the microbiology in MBBR
- No sedimentation in the system
- Optimal water quality



Filter technology makes a difference...


Mechanical filtration

Drum filter

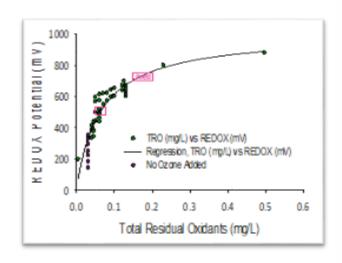
- Active particle removal
- Large particles fall into the water flow
- Increased fines (small particles) as a result
- Should be over-dimensioned for the water flow

Disc filter

- Passive particle removal
- Effective removal of large and fine particles
- Quicker removal of particles from the water flow
- Improved water quality

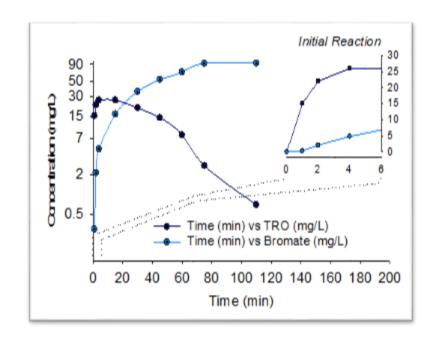
Ozonation – multiple effects from one action...

Ozone


- Ozone is a gas
- It is extremely reactive
- It reacts with:
 - Itself
 - Water
 - Organics
 - It's reaction products
- All waters have an ozone demand
- The ozone demand is dependent on the amount of organics in the water
- Many positive effects in RAS water treatment

Ozone dosing

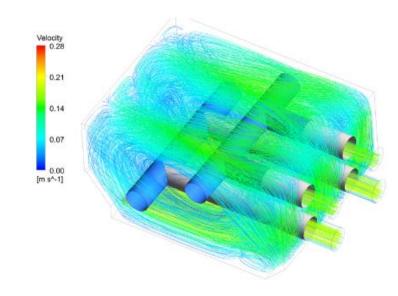
- Rule of thumb 13 24g/kg feed (Timmons et al)
- Sterner dose = 7 to 15g/kg feed (0,65g $O_3/h/kg$ feed)
- ORP (RedOx) +250 → +300mV

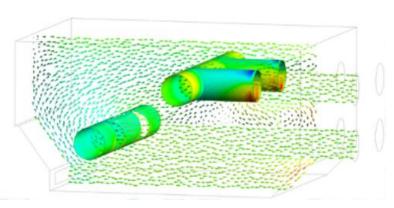

- Oxidation of proteins and fats → availability for MBBR
- Fines removal → micro flocculation
- Maintain control over unwanted bacteria (SRB, H₂S) due to increased ORP
- Result → improved filtration effect → reduced organic build up in the system

Ozone, TRO and bromates

- Seawater can be used in RAS
- > 2 min contact with free ozone increases bromates
- Bromates are produced at VERY HIGH ORP (> + 700mV)
- At +300mV ORP = zero risk of bromates in the system

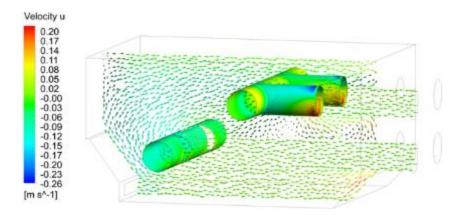
- Ozone reacts extremely quick with protein and fat residues and produces residual oxidants (TRO)
 - H₂O₂, OH
 - Prevents Geosmin and MIB production in the fish
 - Oxidises Geosmin & MIB in the water




MBBR – Moving Bed Bioreactor RAS kidneys...

MBBR – Optimised design

- Patented design
- Where / when does the water WANT to leave?
- 50% smaller footprint
- Self mixing
- 50% less energy
- 3 to 5 minutes retention time
- Complete water treatment



Sterner's patented MBBR

- Less microbiological growth in the system
- No sedimentation potential
- Increased control over heterotrophic growth
- Shorter retention time (operational at 3 5 mins)
- Low energy use (aeration after 70% feeding)
- Low footprint

MBBR Sande Settefisk

Oxytech – Sterner's oxygenation...

Oxygenation – Sterner Oxytech

- Saturation through recirculation
- Effective N₂ stripping
- More effective than traditional cone systems
- 90% design flow at inlet
- > 2.6 Barg inlet pressure

Parameter	OxyTech Model				
	3000 PE	4000 PE	5000 PE	6000 PE	8000 PE
Capacity (Kg O ₂ /h)	3	4	5.5	6.5	15
Max Flow (I/min)	500	550	700	850	2000
Working pressure (bar g)	2.5 – 3.0	2.5 – 3.5	2.5 – 3.5	2.5 – 3.5	2.5 – 3.5

OxyTech 8000

CO₂ Degassing without biofouling....

Sterner's CO₂ removal system

- Sterner's CO₂ removal utilises HDPE structures
- Observation under use illustrates zero fouling
 - Zero increase in TSS
 - Zero H₂S risk
 - Improved water quality for the fish
 - Ozonation will perform a better job
 - Reduced microbial activity increases oxygenation efficacy

Degasser in use at Vikan Settefisk Zero biofouling In use ca 3 months

Largest risk to the system?

Sterner Degasser system

- 6 months in use
- No biofouling
- Colouration from humic acid in the water

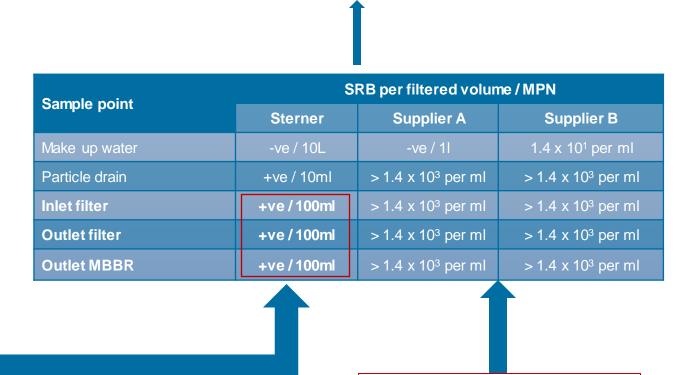
Bioblock type system

- 6 months in use
- Extreme biofouling
- Biofilm contains sulphide
- Risk to fish health
- Difficult to clean

What does that mean...?

Sterner Design → Low TSS

- Very little biofilm growth in the system
- CO₂-degaser is clean after 3 to 6 months
- Safer environment for the fish
- Less neutralisation of the ORP (with ozonation)
 - RedOx is easier to maintain at +250 til +300mV
 - No ozone neutralisation
 - Lower O₃ concentrations required for optimal operation


System	Sample	TSS (mg/l)	VSS (mg/l)
Eidesvik	Inlet water	0,9	0,7
	Side drain	7,3	6,6
	Clean water sludge collector	4,8	4,6
	US Drum filter	4,4	4,4
	DS Drum filter	4,8	4,6
	DS MBBR	4,6	4,5
Hallingfisk	US Drum filter	2,9	2,9
	Pump Sump	< 2	<2

- TSS values < 5mg/l i RAS
- TSS LoD (NS 872) = 2 mg/l
- Samples from Eidesvik
 - Feeding = 650 715 kg / day
 - 40 400g Salmon smolt
- TSS = mg/l solids > 1,2 μ m

Sterner design & microbial control

- Microbiological control
- Hygiene marker → Less SRB growth
- Importance of tank design
- Bacteria follow the particles
- 90% reduction in heterotrophic activity
- Significantly reduced geosmin build up

SRB PRODUCE H₂S

Significant microbial activity Significant H₂S risk

Biomass survival & FCR

Feed Cost Ratio

Low Mortality

0.75 FCRb (biological)

0.25% after 90 days

1Kg fish → 0.75Kg feed

Industry average = 11 to 25%

WATER QUALITY IS THE KEY

BETTER WATER QUALITY -> LESS STRESS FOR THE FISH

IMPROVED GROWTH

IMPROVED ECONOMY

GIVE THE FISH THE BEST AND THEY WILL GIVE YOU THE BEST

BLUE ECONOMY AQUACULTURE FORUM

